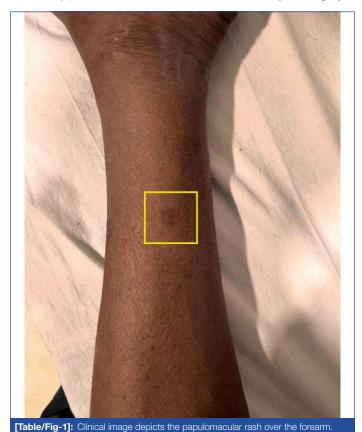
DOI: 10.7860/JCDR/2025/81615.21976

Internal Medicine Section

# A Case Report on Post-haemodialysis Pyrexia Caused due to a Rare Species of *Trichosporon*

AMAN KUMAR GUPTA<sup>1</sup>, SOURYA ACHARYA<sup>2</sup>, SUNIL KUMAR<sup>3</sup>, DIPIKA SHAW<sup>4</sup>, ANJALI PATOND<sup>5</sup>




#### **ABSTRACT**

Hypertension is a global health threat, which, in coexistence with chronic kidney disease, increases the associated health risks. Most of the vulnerable patients receive prophylactic therapeutic intervention for fungal infections, though, in a few instances, there is a delay in symptomatic presentation. The patients with hypertension and chronic kidney disease receiving haemodialysis should be monitored strictly for the same. This is a case of a 41-year-old male infected with *Trichosporon* infection with a positive history of hypertension and chronic kidney disease, receiving haemodialysis treatment. The patient was timely confirmed to have the diagnosis and successfully managed with the systemic antifungal drug Itraconazole {100 mg (BD) for 14 days} and Fluoroquinolones {500 mg (OD) for seven days}. A follow-up at one month showed the patient with laboratory markers within normal limits.

**Keywords:** Chronic kidney disease, Immunosuppressed, Microbial infections, Post-transplant infections, *Trichosporonosis*, *Trichosporon* species

#### **CASE REPORT**

A 41-year-old male presented at the outpatient department with complaints of breathlessness and bilateral pedal oedema. There was a history of hypertension for three years and Chronic Kidney Disease (CKD), indicating end-stage renal disease for the past nine months. The vitals on admission were noted as a pulse of 108/minute, a respiratory rate of 20/minute, and a blood pressure of 170/100 mmHg. The patient underwent haemodialysis for the same. Two cycles of haemodialysis were completed uneventfully, and the patient was noted to be doing well. However, after the third cycle, rashes developed all over his body [Table/Fig-1] with fever spikes. Laboratory parameters were noted as mentioned in [Table/Fig-2].



Variables Patient value Normal value Haemoglobin (g/dL) 7.7 13.2 to 16.6 MCHC (g/dL) 34 2 32 to 36 MCV (fL) 80 - 100 94.9 27 to 33 MCH (pg/cell) 32.4 Total RBC count (million/mcL) 2.38 4.7 to 6.1 4000-11000 Total WBC count (cells/µL) 7300 1.5-4.5 Total platelet count (lacs/µL) 1.8 Haematocrit 22.6% 41-50% Monocytes 2-8% Granulocytes 70% 41.5-50.4% Lymphocytes 25% 20-40% Eosinophils 0-7% 1% Basophils 0-1% 0% Red cell distribution width 15.6% 12-15% Urea (mg/dL) 180 9-20 Creatinine (mg/dL) 0.66-1.25 11 Sodium (mmol/L) 142 137-145 Potassium (mmol/L)

**[Table/Fig-2]:** Laboratory parameters of the patient on admission. MCHC: Mean corpuscular haemoglobin concentration; MCV: Mean corpuscular volume; MCH: Mean corpuscular haemoglobin; RBC: Red blood cell; WBC: White blood cell.

The blood samples were collected in duplicates in BacT culture bottles and processed using the BACTEC system. One of the two samples was found to be positive. After flagging positive, the sample from the BACTEC bottle was cultured on Sabouraud dextrose agar for the isolation of *Trichosporon* spp. Gram staining of the colony revealed Gram-positive budding yeast cells with barrel-shaped arthroconidia, confirming *Trichosporon* spp. [Table/Fig-3,4]. Follow-up cultures were not sent; the patient showed full clinical recovery and laboratory normalisation by 15 days.

In this case, the provisional diagnosis was pyrexia of unknown origin post-haemodialysis. Based on positive blood culture findings and morphological identification, the final diagnosis was confirmed as *Trichosporonosis*. The identification was confirmed by morphology due to instrumentation limitations; VITEK or Matrix-assisted laser



[Table/Fig-3]: Culture plate showing the growth of Trichosporon spp. on Sabouraud dextrose agar media.



**Table/Fig-4]:** Microscopic image (100x) represents the Gram-positive budding yeast cell with barrel-shaped arthroconidia.

desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was not available at the time.

Antifungal susceptibility testing was not performed due to logistical constraints. Itraconazole was selected based on the standard sensitivity of *Trichosporon* spp. The patient was managed with the systemic antifungal agent Itraconazole (100 mg twice daily for 14 days) along with fluoroquinolones (Ciprofloxacin 500 mg once daily for 7 days) as the patient developed fever and rash post-haemodialysis, which are systemic signs of infection attributed to the secondary Gram-negative bacteraemia, which is a known complication in CKD patients undergoing dialysis. A follow-up was conducted after 15 days, during which the patient showed symptomatic improvement.

## **DISCUSSION**

Trichosporon species are emerging opportunistic pathogens, posing a serious health threat in patients with invasive medical

devices such as indwelling catheters, haematology issues, CKD, end-stage renal disease, and other ailments [1,2]. This patient developed Trichosporon infection following haemodialysis with a dialysis catheter placed in the internal jugular vein, consistent with the clinical findings described in the case series reported by Hassan H et al., [2]. Trichosporon species can be observed growing on the skin, gastrointestinal tract, and respiratory tract in humans. Trichosporon infections are commonly associated with superficial sites but might be invasive in patients with haematological issues such as lymphoma, leukaemia, and other systemic infections [3,4]. Trichosporonosis can also be a serious health threat in immunocompromised patients post-transplant and CKD patients. In patients with hypertension, dialysis, and CKD, Trichosporonosis infection should be considered as a differential diagnosis attributed to the associated clinical threat. Clinicians should also be vigilant in patients with invasive medical devices such as a Foley catheter [1,2].

Invasive Trichosporon infection can be an additional clinical threat in terms of posing a diagnostic and therapeutic challenge when drug resistance is noted. It can result in treatment failure and adverse outcomes [5]. Trichosporonosis is a common threat to CKD patients. CKD patients may develop fatal fungaemia with severe consequences if the infection is invasive. Trichosporon species have emerged as opportunistic fungal pathogens capable of causing invasive infections, particularly among individuals with haematological malignancies, recipients of bone marrow or organ transplants, extensive burns, Human Immunodeficiency Virus (HIV) infection, and those undergoing peritoneal dialysis or other invasive medical procedures [6]. This can also be observed in this case, wherein the patient developed the infection after two cycles of haemodialysis in view of his end-stage renal disease. Mortality rates of *Trichosporon* infection in the immunocompromised subset have been reported in a range of 42-90% [7]. There are around 16 different strains causing infections in humans [8]. Trichosporon species are classically observed as creamy white colonies on Sabouraud dextrose agar, often showing cerebriform surfaces with radial fissures [8,9].

Trichosporonosis exhibits a wide range of clinical presentations, varying from superficial, self-limited skin infections to severe, life-threatening invasive disease that might disseminate to multiple organs in immunocompromised patients [8-10]. Invasive trichosporonosis often presents with persistent fever unresponsive to broad-spectrum antibacterial treatments, accompanied by systemic signs such as fungal sepsis and shock. Patients may also develop cutaneous manifestations, respiratory symptoms including pneumonia, eye involvement like chorioretinitis, and renal impairment. The disease progression can be rapid and is associated with high morbidity and mortality, especially in vulnerable host populations [10]. Trichosporonosis is a serious threat in CKD and end-stage renal disease patients, as noted in this case. The patient underwent two cycles of dialysis uneventfully and was diagnosed with a Trichosporonosis during the third cycle, which was managed successfully by antifungal treatment with the antifungal tablet Itraconazole 100 mg twice a day for 14 days, and fluoroquinolone 500 mg once a day for 7 days. Itraconazole was selected based on the standard sensitivity of *Trichosporon* spp., and Fluoroguinolone was added empirically to cover possible gram-negative organisms due to systemic signs. A comparative analysis of the clinical presentation, treatment, and outcomes has been described in Table/ Fig-5] [2,6,10]. The patient developed systemic signs of infection (fever and rash post-haemodialysis), where secondary gramnegative bacteraemia is a known risk in CKD patients undergoing dialysis with vascular access. Hence, Ciprofloxacin (500 mg OD for 7 days) was initiated empirically to cover potential gram-negative bacterial infections alongside itraconazole, which was targeted against the confirmed Trichosporon spp. infection. There is a need for clinicians to have Trichosporonosis as a differential diagnosis in patients undergoing organ transplant, haemodialysis, and those with compromised immune systems. Though prophylactic antifungal and voriconazole therapy can help control the infection, a delay in diagnosis can result in adverse events [2,10]. This is a case report of a male in his early 40s who was a known case of hypertension, who was later diagnosed with CKD/end-stage renal disease and encountered *Trichosporon* spp. infection during dialysis. The patient was successfully managed with systemic antifungal drug Itraconazole and fluoroquinolones. Repeat blood cultures were not sent as the patient showed full clinical recovery, and laboratory tests were reported normal on the 15th day. The patient was discharged with advice for one monthly follow-up for six months.

| Author/ Year                 | Clinical setting                  | Treatment                      | Outcome       |
|------------------------------|-----------------------------------|--------------------------------|---------------|
| Sah R et al.,<br>2019 [10]   | Liver-kidney transplant recipient | Voriconazole                   | Survived      |
| Yang MF et al.,<br>2014 [6]  | Kidney transplant with pneumonia  | Caspofungin<br>(ineffective)   | Fatal         |
| Hassan H et al.,<br>2024 [2] | CKD patients on dialysis          | Voriconazole                   | All recovered |
| Present Case                 | CKD on dialysis                   | Itraconazole+<br>Ciprofloxacin | Recovered     |

[Table/Fig-5]: Comparative analysis of published Trichosporon infection reports [2,6,10].

## CONCLUSION

*Trichosporon* infection can be threatening and might bear adverse outcomes if not timely diagnosed and treated. Although most of the susceptible patients' subsets are on prophylactic antifungal medications, due to emerging drug resistance, *Trichosporonosis* 

can be a serious threat; hence, additional research on this pathogen and its drug resistance profile is needed.

#### **REFERENCES**

- [1] Qiu J, Zhao L, Cheng Y, Chen Q, Xu Y, Lu Y, et al. Exploring the gut mycobiome: Differential composition and clinical associations in hypertension, chronic kidney disease, and their comorbidity. Front Immunol. 2023;14:1317809. Doi: 10.3389/ fimmu.2023.1317809.
- [2] Hassan H, Nair A, Varsha NS, Jyothi R, Reghukumar A, Sathyabhama MC, et al. Trichosporon infection in chronic kidney disease patients from a tertiary care hospital–A case series or an outbreak? An unanswered question but a wellmanaged problem. GMS Infect Dis. 2024;12:05. Doi: 10.3205/id000090.
- [3] Milan EP, Silva-Rocha WP, de Almeida JJ, Fernandes TU, de Araújo Prudente AL, de Azevedo MF, et al. Trichosporon inkin meningitis in Northeast Brazil: First case report and review of the literature. BMC Infect Dis. 2018;18:01-08. Doi: 10.1186/s12879-018-3363-7.
- [4] Hajjeh RA, Blumberg HM. Bloodstream infection due to Trichosporon beigelii in a burn patient: Case report and review of therapy. Clin Infect Dis. 1995;20(4):913-16. Doi: 10.1093/clinids/20.4.913.
- [5] Oliveira dos Santos C, Zijlstra JG, Porte RJ, Kampinga GA, van Diepeningen AD, Sinha B, et al. Emerging pan-resistance in Trichosporon species: A case report. BMC Infect Dis. 2016;16:1-4. Doi: 10.1186/s12879-016-1477-3.
- [6] Yang MF, Gao HN, Li LJ. A fatal case of Trichosporon asahii fungemia and pneumonia in a kidney transplant recipient during caspofungin treatment. Ther Clin Risk Manag. 2014:759-62.
- [7] Alboloshi GJ, Jiman-Fatani AA, Attallah D, Mokhtar JA, Al-Abdullah NA, Alkuwaity K, et al. The prevalence and risk factors of Trichosporonosis at King Abdulaziz University Hospital. Int J Gen Med. 2024:1297-310.
- [8] Montoya Mendoza AM, González González GM. Trichosporon spp.: An emerging fungal pathogen. Med Univ. 2014;16(62):37-43.
- [9] Castano G, Yarrarapu SNS, Mada PK. Trichosporonosis. [Updated 2023 Jul 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482477/
- [10] Sah R, Soin AS, Chawla S, Wadhwa T, Gupta N. Disseminated Trichosporon asahii infection in a combined liver kidney transplant recipient successfully treated with voriconazole. Imm Inflamm Dis. 2019;7(3):125-29. Doi: 10.1002/iid3.250.

#### PARTICULARS OF CONTRIBUTORS:

- 1. Junior Resident, Department of Medicine, DMIHER, Sawangi, Meghe, Wardha, Maharashtra, India.
- 2. Professor, Department of Medicine, DMIHER, Sawangi, Meghe, Wardha, Maharashtra, India.
- 3. Professor, Department of Medicine, DMIHER, Sawangi, Meghe, Wardha, Maharashtra, India.
- 4. Assistant Professor, Department of Medicine, DMIHER, Sawangi, Meghe, Wardha, Maharashtra, India.
- 5. Assistant Professor, Department of Medicine, DMIHER, Sawangi, Meghe, Wardha, Maharashtra, India.

#### NAME, ADDRESS, E-MAIL ID OF THE CORRESPONDING AUTHOR:

Dr. Aman Kumar Gupta,

Junior Resident, Department of Medicine, DMIHER, Sawangi, Meghe,

Wardha-442001, Maharashtra, India. E-mail: amangupta1907@gmail.com

### AUTHOR DECLARATION:

- Financial or Other Competing Interests: None
- Was informed consent obtained from the subjects involved in the study? Yes
- For any images presented appropriate consent has been obtained from the subjects. Yes

#### PLAGIARISM CHECKING METHODS: [Jain H et al.]

- Plagiarism X-checker: Jul 06, 2025
- Manual Googling: Sep 06, 2025
- iThenticate Software: Sep 08, 2025 (7%)

ETYMOLOGY: Author Origin

EMENDATIONS: 6

Date of Submission: Jun 27, 2025 Date of Peer Review: Jul 15, 2025 Date of Acceptance: Sep 10, 2025 Date of Publishing: Nov 01, 2025